Skip Navigation
Skip to contents

Journal of Powder Materials : Journal of Powder Materials

OPEN ACCESS
SEARCH
Search

Author index

Page Path
HOME > Browse Articles > Author index
Search
Byoung-Kee Kim 9 Articles
Effect of Sintering Temperature on the High Temperature Oxidation of Fe-Cr-Al Powder Porous Metal Manufactured by Electrospray Process
Jae-Sung Oh, Young-Min Kong, Byoung-Kee Kim, Kee-Ahn Lee
J Korean Powder Metall Inst. 2012;19(6):435-441.
DOI: https://doi.org/10.4150/KPMI.2012.19.6.435
  • 34 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF
A new manufacturing process of Fe-Cr-Al powder porous metal was attempted. First, ultra-fine fecralloy powders were produced by using the submerged electric wire explosion process. Evenly distributed colloid (0.05~0.5% powders) was dispersed on PU (Polyurethane) foam through the electrospray process. And then degreasing and sintering processes were conduced. In order to examine the effect of sintering temperature in process, pre-samples were sintered for two hours at temperatures of 1350°C, 1400°C, 1450°C, and 1500°C, respectively, in H_2 atmospheres. A 24-hour TGA (thermo gravimetric analysis) test was conducted at 1000°C in a 79% N_2+21% O_2 to investigate the high temperature oxidation behavior of powder porous metal. The results of the high temperature oxidation tests showed that oxidation resistance increased with increasing sintering temperature (2.57% oxidation weight gain at 1500°C sintered specimen). The high temperature oxidation mechanism of newly manufactured Fe-Cr-Al powder porous metal was also discussed.

Citations

Citations to this article as recorded by  
  • Effect of Cell Size on the High Temperature Oxidation Properties of Fe-Cr-Al Powder Porous Metal Manufactured by Electro-spray Process
    Jae-Sung Oh, Young-Min Kong, Byoung-Kee Kim, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2014; 21(1): 55.     CrossRef
High Temperature Oxidation Behavior of Ni based Porous Metal
Sung-Hwan Choi, Jung-Yeul Yun, Hye-Mun Lee, Young-Min Kong, Byoung-Kee Kim, Kee-Ahn Lee
J Korean Powder Metall Inst. 2011;18(2):122-128.
DOI: https://doi.org/10.4150/KPMI.2011.18.2.122
  • 24 View
  • 0 Download
  • 7 Citations
AbstractAbstract PDF
This study investigated the high temperature oxidation behavior of Ni-22.4%Fe-22%Cr-6%Al (wt.%) porous metal. Two types of open porous metals with different pore sizes of 30 PPI and 40 PPI (pore per inch) were used. A 24-hour TGA test was conducted at three different temperatures of 900°C, 1000°C and 1100°C. The results of the BET analysis revealed that the specific surface area increased as the pore size decreased from 30 PPI to 40 PPI. The oxidation resistance of porous metal decreased with decreasing pore size. As the temperature increased, the oxidation weight gain of the porous metal also increased. Porous metals mainly created oxides such as Al_2O_3, Cr_2O_3, NiAl_2O_4, and NiCr_2O_4. In the 40 PPI porous metal with small pore size and larger specific surface area, the depletion of stabilizing elements such as Al and Cr occurred more quickly during oxidation compared to the 30 PPI porous metal. Ni-Fe-Cr-Al porous metal's high-temperature oxidation micro-mechanism was also discussed.

Citations

Citations to this article as recorded by  
  • Effect of Strut Thickness on Room and High Temperature Compressive Properties of Block-Type Ni-Cr-Al Powder Porous Metals
    B.-H. Kang, M.-H. Park, K.-A. Lee
    Archives of Metallurgy and Materials.2017; 62(2): 1329.     CrossRef
  • Fabrication of metallic alloy powder (Ni3Fe) from Fe–77Ni scrap
    Inseok Seo, Shun-Myung Shin, Sang-An Ha, Jei-Pil Wang
    Journal of Alloys and Compounds.2016; 670: 356.     CrossRef
  • Preparation of oxide powder by continuous oxidation process from recycled Fe-77Ni alloy scrap
    J Y Yun, D H Park, G J Jung, J P Wang
    IOP Conference Series: Materials Science and Engineering.2015; 103: 012026.     CrossRef
  • Reduction of High Nickel-Based Oxide Particles Using Hydrogen Gas
    Sung Ho Joo, Shun Myung Shin, Dong Ju Shin, Jei Pil Wang
    Applied Mechanics and Materials.2015; 778: 148.     CrossRef
  • Fabrication of oxide powder from Fe–46Ni alloy scrap
    J.-Y. Yun, D.-W. Lee, S.-M. Shin, J.-P. Wang
    Materials Research Innovations.2015; 19(sup5): S5-415.     CrossRef
  • Evaluation of Creep Reliability of Powder Metallurgy and Cast-type Ni-based Superalloy by Using Ultrasonic Wave
    Chan-Yang Choi, Jin-Hun Song, Se-Ung Oh, Chung-Seok Kim, Sook-In Kwun, Sung-Tag Oh, Chang-Yong Hyun, Jai-Won Byeon
    Journal of Korean Powder Metallurgy Institute.2012; 19(3): 215.     CrossRef
  • Effect of Sintering Temperature on the High Temperature Oxidation of Fe-Cr-Al Powder Porous Metal Manufactured by Electrospray Process
    Jae-Sung Oh, Young-Min Kong, Byoung-Kee Kim, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2012; 19(6): 435.     CrossRef
Fabrication of Ni-free Fe-based Alloy Nano Powder by Pulsed Wire Evaporation in Liquid: Part 2. Effect of Solvent and Comparison of Fabricated Powder owing to Fabrication Method
Ho-Jin Ryu, Yong-Heui Lee, Kwang-Ug Son, Young-Min Kong, Jin-Chun Kim, Byoung-Kee Kim, Jung-Yeul Yun
J Korean Powder Metall Inst. 2011;18(2):112-121.
DOI: https://doi.org/10.4150/KPMI.2011.18.2.112
  • 29 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF
This study investigated the effect of solvent on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid and compared the alloy particles fabricated by three different methods (PWE in liquid, PWE in Ar, plasma arc discharge), for high temperature oxidation-resistant metallic porous body for high temperature soot filter system. Three different solvents (ethanol, acetone, distilled water) of liquid were adapted in PWE in liquid process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. The alloy powder synthesized by PWE in ethanol has good particle size and no surface oxidation compared to that of distilled water. Since the Fe-based alloy powders, which were fabricated by PWE in Ar and PAD process, showed surface oxidation by TEM analysis, the PWE in ethanol is the best way to fabricate Fe-based alloy nano powder.

Citations

Citations to this article as recorded by  
  • Effect of Cell Size on the High Temperature Oxidation Properties of Fe-Cr-Al Powder Porous Metal Manufactured by Electro-spray Process
    Jae-Sung Oh, Young-Min Kong, Byoung-Kee Kim, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2014; 21(1): 55.     CrossRef
Fabrication of Ni-free Fe-based Alloy Nano Powder by Pulsed Wire Evaporation in Liquid: Part I. Effect of Wire Diameter and Applied Voltage
Ho-Jin Ryu, Yong-Heui Lee, Kwang-Ug Son, Young-Min Kong, Jin-Chun Kim, Byoung-Kee Kim, Jung-Yeul Yun
J Korean Powder Metall Inst. 2011;18(2):105-111.
DOI: https://doi.org/10.4150/KPMI.2011.18.2.105
  • 27 View
  • 0 Download
  • 3 Citations
AbstractAbstract PDF
This study investigated the effect of wire diameter and applied voltage on the fabrication of Ni-free Fe-based alloy nano powders by employing the PWE (pulsed wire evaporation) in liquid, for high temperature oxidation-resistant metallic porous body for high temperature particulate matter (or soot) filter system. Three different diameter (0.1, 0.2, and 0.3 mm) of alloy wire and various applied voltages from 0.5 to 3.0 kV were main variables in PWE process, while X-ray diffraction (XRD), field emission scanning microscope (FE-SEM), and transmission electron microscope (TEM) were used to investigate the characteristics of the Fe-Cr-Al nano powders. It was controlled the number of explosion events, since evaporated and condensed nano-particles were coalesced to micron-sized secondary particles, when exceeded to the specific number of explosion events, which were not suitable for metallic porous body preparation. As the diameter of alloy wire increased, the voltage for electrical explosion increased and the size of primary particle decreased.

Citations

Citations to this article as recorded by  
  • Fabrication of Fe3O4/Fe/Graphene nanocomposite powder by Electrical Wire Explosion in Liquid Media and its Electrochemical Properties
    Yoo-Young Kim, Ji-Seub Choi, Hoi-Jin Lee, Kwon-Koo Cho
    Journal of Korean Powder Metallurgy Institute.2017; 24(4): 308.     CrossRef
  • Effect of Cell Size on the High Temperature Oxidation Properties of Fe-Cr-Al Powder Porous Metal Manufactured by Electro-spray Process
    Jae-Sung Oh, Young-Min Kong, Byoung-Kee Kim, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2014; 21(1): 55.     CrossRef
  • Effect of Sintering Temperature on the High Temperature Oxidation of Fe-Cr-Al Powder Porous Metal Manufactured by Electrospray Process
    Jae-Sung Oh, Young-Min Kong, Byoung-Kee Kim, Kee-Ahn Lee
    Journal of Korean Powder Metallurgy Institute.2012; 19(6): 435.     CrossRef
Preparation of Ultrafine C/N Controled TiCxNy Powders by Magnesium Reduction
Dong-Won Lee, Byoung-Kee Kim, Jung-Yeul Yun, Ji-Hoon Yu, Yong-Jin Kim
J Korean Powder Metall Inst. 2010;17(2):142-147.
DOI: https://doi.org/10.4150/KPMI.2010.17.2.142
  • 17 View
  • 0 Download
  • 1 Citations
AbstractAbstract PDF
The ultrafine titanium carbonitride (TiC_xN_y) particles below 100 nm in mean size, including various carbon and nitrogen contents (x=0.55~0.9, y=0.1~0.5), were successfully synthesized by new Mg-thermal reduction process. Nanostructured sub-stoichiometric titanium carbide (TiC_x) particles were initially produced by the magnesium reduction of gaseous TiCl_4+x/2C_2Cl_4 at 890°C and post heat treatments in vacuum were performed for 2 hrs to remove residual magnesium and magnesium chloride mixed with TiC_x. Finally, well C/N-controled TiC_xN_y phases were successfully produced by nitrification heat treatment under normal N_2 gas atmosphere at 1150°C for 2 hrs. The values of purity, mean particle size and oxygen content of produced particles were about 99.3%, 100 nm and 0.2 wt.%, respectively.

Citations

Citations to this article as recorded by  
  • Characteristics of Stainless Steel Composites with Nano-sized TiCxNy
    Tae-Ho Ban, Sung-Bum Park, Soo-Jeong Jo, Dong-Won Lee, Farkhod R. Turaev, Yong-Il Park, Sung-Jin Kim
    Journal of Korean Powder Metallurgy Institute.2011; 18(3): 290.     CrossRef
Preparation of Ultrafine TiCN Powders by Mg-reduction of Metallic Chlorides
Dong-Won Lee, Jin-Chun Kim, Yong-Jin Kim, Byoung-Kee Kim
J Korean Powder Metall Inst. 2009;16(2):98-103.
DOI: https://doi.org/10.4150/KPMI.2009.16.2.098
  • 15 View
  • 0 Download
AbstractAbstract PDF
The ultrafine titanium carbonitride particles (TiC_0.7N_0.3) below 100nm in mean size were successfully synthesized by Mg-thermal reduction process. The nanostructured sub-stoichiometric titanium carbide (TiC_0.7) particles were produced by the magnesium reduction at 1123K of gaseous TiC_l4+xC_2Cl_4 and the heat treatments in vacuum were performed for five hours to remove residual magnesium and magnesium chloride mixed with TiC_0.7. And final TiC_0.7N_0.3 phase was obtained by nitrification under normal N_2 gas at 1373K for 2 hrs. The purity of produced TiC_0.7N_0.3 particles was above 99.3% and the oxygen contents below 0.2 wt%. We investigated in particular the effects of the temperatures in vacuum treatment on the particle refinement of final product.
Synthesis of Ultrafine TiC-5%Co Powder by Using Co Nitrate and TiO(OH)2 Slurry and Evaluation of Sintered Materials Prepared by Mixing WC-Co
Seong-Hyeon Hong, Byoung-Kee Kim
J Korean Powder Metall Inst. 2008;15(2):107-113.
DOI: https://doi.org/10.4150/KPMI.2008.15.2.107
  • 15 View
  • 0 Download
AbstractAbstract PDF
Ultrafine TiC-5%Co powders were synthesized by spray drying of aqueous solution of TiO(OH)_2 slurry and cobalt nitrate, followed by calcination and carbothermal reaction. The oxide powders with carbon powder was reduced and carburized at 900°Csim1250°C under hydrogen atmosphere. During reduction, CO gas was mainly evolved by reducing reaction of oxides. Ultrafine TiC-5%Co powders were easily formed by carbothermal reaction at 1250°C due to using ultrafine powders as raw materials. The ultrafine WC-TiC-Co alloy prepared by sintering of mixed powder of ultrafine WC-13%Co powder and ultrafine TiC-5%Co powder has higher sintered density and mechanical properties than WC-TiC-Co alloy prepared by commercial WC, TiC and Co powders.
Spark Plasma Sintering of the Ductile Cu-Gas-atomized Ni Bulk Metallic Glass Composite Powders
Jin-Chun Kim, Yong-Jin Kim, Byoung-Kee Kim, Ji-Soon Kim
J Korean Powder Metall Inst. 2006;13(5):351-359.
DOI: https://doi.org/10.4150/KPMI.2006.13.5.351
  • 17 View
  • 0 Download
AbstractAbstract PDF
Ni based(Ni_57Zr_20Ti_18Si_2Sn_3) bulk metallic glass(BMG) powders were produced by a gas atomization process, and ductile Cu powders were mixed using a spray drying process. The Ni-based amorphous powder and Cu mixed Ni composite powders were compacted by a spark plasma sintering (SPS) processes into cylindrical shape. The relative density varied with the used SPS mold materials such as graphite, hardened steel and WC-Co hard metal. The relative density increased from 87% to 98% when the sintering temperature increased up to 460°C in the WC-Co hard metal mold.
Preparation of Nanosized WO3 Powder by Chemical Vapor Condensation Process
Jin-Chun Kim, Byoung-Kee Kim
J Korean Powder Metall Inst. 2003;10(3):186-189.
DOI: https://doi.org/10.4150/KPMI.2003.10.3.186
  • 14 View
  • 0 Download
AbstractAbstract PDF
A chemical vapor condensation (CVC) process using the pyrolysis of metal-organic precursors was applied to produce the nanosized WO_3 powders. Morphology and phase changes of the synthesized WO_3 powder as a function of CVC parameters were investigated by XRD, BET and TEM. The agglomerated nanosized monoclinic WO_3 powders with nearly spherical shape and 10-38 nm in mean diameter could be obtained. Conditions to produce the WO_3 nanopowders are presented in this paper.

Journal of Powder Materials : Journal of Powder Materials